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decade as they provide less numerical dissipation and do
not require a kinetic energy conservation property to con-This paper proposes some new wavenumber-extended high-or-

der upwind-biased schemes. The dispersion and dissipation errors trol the aliasing error [6]. In general, although the high-
of upwind-biased finite-difference schemes are assessed and com- order upwind schemes cannot offer the same resolution
pared by means of a Fourier analysis of the difference schemes. characteristics as spectral methods, they are computation-Up to 11th-order upwind-biased schemes are analyzed. It is shown

ally more efficient and robust and can be easily imple-that both the upwind-biased scheme of order 2N 2 1 and the corre-
mented in complex geometries. Following Lele [7], resolu-sponding centered differencing scheme of order 2N have the same

dispersion characteristics; thus the former can be considered to be tion (characteristics) in this paper means the accuracy of
the latter plus a correction that reduces the numerical dissipation. numerical representation of the solution over the full range
The new second-order wavenumber-extended scheme is tested and

of length scales that are resolvable on a mesh. Numericalcompared with some well-known schemes. The range of wavenum-
spatial resolution has also been improved remarkably inbers that are accurately treated by the upwind-biased schemes is

improved by using additional constraints from the Fourier analysis the past decade as a result of the development of larger
to construct the new schemes. The anisotropic behavior of the dis- and faster computers, and has resulted in additional popu-
persion and dissipation errors is also analyzed for both the conven- larity of high-order schemes. Rai and Moin [6] revisited a
tional and the new wavenumber-extended upwind-biased finite-

finite-difference method for a direct simulation of fullydifference schemes. Q 1997 Academic Press
developed turbulent channel flow and presented a fifth-
order upwind-biased scheme [8]. This fifth-order scheme
was evaluated by Tamamidis and Assanis [9] against the1. INTRODUCTION
second-order fully upwind scheme of Warming and Beam
[1] and the second-order QUICK scheme of Leonard [3].An inherent limitation of any numerical method is that

any wavenumber k greater than f/Dx on a uniform mesh The three schemes were applied to turbulent flow simula-
tion with a k 2 « turbulence model. The fifth-order schemecannot be resolved, where Dx is the mesh size. In many

flow situations, such as those close to discontinuities, high was found to be superior to the other two schemes tested.
Kawamura and Kuwahara [10] formulated a third-orderwavenumbers exist inherently which cause not only errors

in the solution, but also numerical instability. Upwind fi- upwind scheme using a five-point stencil with asymmetrical
coefficients. The authors claimed that the scheme withnite-difference methods are one possible way of introduc-

ing numerical dissipation into the solution to damp high- numerical diffusion of fourth-order-derivative type can be
used directly to model turbulent flows.wavenumber components. However, the numerical (artifi-

cial) dissipation may exceed the physical diffusion, espe- Finite-difference and finite-volume methods using high-
order upwinding schemes have become some of the mostcially for high Reynolds number flows. This suggests that

the upwind schemes should be carefully designed to pro- commonly used methods in current computational fluid
dynamics (CFD) application codes. Further developmentduce suitable numerical dissipation. There has been a great

effort in developing second-order and third-order schemes, of high-order upwind schemes is important as there is a
need to control the numerical dissipation and to improvee.g., [1–3], and oscillation-free or monotone total variation

diminishing (TVD) high-order schemes [4, 5] to reduce the numerical solution accuracy. In this paper, upwind-
biased schemes up to 11th order are analyzed. If the resolu-the numerical dissipation. In addition, the numerical dissi-

pation may also need to be anisotropic, as the flow behavior tion is sufficient, a high-order scheme may be beneficial
from the point of view of accuracy. It is not the purposeis generally not isotropic.

Use of high-order upwind finite-difference schemes in here to suggest that high-order schemes such as 11th-order
upwind schemes can or should be used in flow simulations,turbulent fluid flow simulations has increased in the past
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but rather to document, analyze, and improve these lower-order schemes near the boundary are far superior
to those obtained by the lower-order schemes everywhereschemes and to provide numerical modelers with alterna-

tive numerical schemes. As discussed later, the quality of [6, 15]. However, the overall accuracy decreases compared
to what is expected from a higher-order scheme. Gustafs-a finite-difference scheme cannot be ranked by the order

of Taylor truncation alone. This is particularly important son [16] predicted that the boundary conditions should be
at least of an order of N 2 1 in order to retain an Nth-for time-dependent flows. It should be emphasized that

sufficient numerical spatial resolution is required to order global accuracy. Some higher-order boundary condi-
tions and their stability are discussed extensively in [17,achieve the performance of a high-order scheme. Other-

wise, the well-known Runge phenomena may occur. 18], for example. These two aspects will not be discussed
further in this paper.Compared to spectral methods, the major shortcoming

of the conventional finite-difference schemes is their lower It should also be mentioned that despite the damping
at the high-wavenumber range, the high-order upwind-accuracy in resolution. An extended-wavenumber method

was suggested by Vichnevetsky and De Schutter [11] to biased schemes developed in this paper still suffer from a
lack of positivity in regions of high variable gradients.maximize the range of wavenumbers that a finite-differ-

ence scheme can represent. This method was applied by Among many possibilities, the well-known FCT technique
[19] can be used to eliminate the numerical oscillations,Lele [7] for improvement of the resolution characteristics

of compact finite-difference schemes. The resolution char- as demonstrated extensively by Li and Rudman [20].
The emphasis of this work is to apply Fourier analysisacteristics were greatly improved, and the new schemes

are said to have spectral-like behavior by Lele. Zingg and to analyze in detail the high-order upwind-biased finite-
difference schemes and develop new upwind-biasedLomax [12] applied the same method for constructing fi-

nite-difference schemes on triangular grids. This method schemes with better resolution characteristics. As compact
(implicit) schemes and their wavenumber-extended coun-will be used here to develop wavenumber-extended up-

wind-biased schemes. The second- or fourth-order wave- terparts have been treated extensively by Lele [7], and
explicit centered differencing schemes by Tam and Webbnumber-extended upwind-biased schemes developed in

this paper provide some alternatives with better resolution [21], the focus here will be on explicit upwind-biased
schemes. The upwind-biased schemes without wavenum-characteristics for replacing the conventional second- or

third-order upwind schemes in finite-difference and finite- ber extension will be presented for the first derivatives of
up to 11th order and those with wavenumber extension ofvolume simulations of practical time-dependent flows.

There are at least two other important aspects to be up to 8th order. A detailed analysis of anisotropic behavior
of these schemes will also be presented. All the schemesconsidered when developing high-order finite-difference

schemes. The first is the robustness of their implementa- are documented in detail in Appendixes 1 and 3.
tion. Rai and Moin [6] claimed that the upwind-biased

2. FORMULATION OF HIGH-ORDERschemes are extremely robust. There has been a consider-
UPWIND-BIASED SCHEMESable effort in the literature to establish reliable ways of

implementing these schemes in finite-difference and finite-
2.1. General Formulationvolume codes. For example, the implementation of the

well-known QUICK schemes has been discussed in [13]. It is well known that the finite-difference approximation
It has been shown by many authors that the deferred cor- of the first derivative of a dependent variable, f, can be
rection procedure of Khosla and Rubin [14] is very reliable expressed as a linear combination of the given variable
and easy for implementation of high-order finite-difference values at some discrete grid points. In this paper, we are
schemes [9, 15]. In the deferred correction method, the interested in those schemes formulated by using the Taylor
high-order upwind scheme is considered a first-order up- series truncation.
wind scheme with some correction terms to improve its For simplicity, consider a uniform grid with index j. For
formal accuracy. The correction terms are treated explicitly a 2N 1 1 point stencil ( j, j 6 1, ..., j 6 N), xj6n 5 6nDx
in its implementation. It is expected that the deferred cor- at node j 6 n, and xj 5 0 at node j. The variable values
rection method described in detail in [15] could be used fj6n 5 f(xj6n) are given.
for the schemes developed in this paper. The following generalized formulation is proposed. This

The second aspect to be considered when developing formulation will also be used later for Fourier analysis of
high-order schemes lies in the treatment of near-boundary the schemes,
grid points, as there is not a sufficient number of grid points
for straightforward implementation of the high-order F­f

­xGj
5

1
Dx SONn51

a2nfj2n 1 a0fj 1 ON
n51

anfj1nD
(1)

schemes. The most conventional method of boundary point
treatment is to apply lower-order schemes near the bound-
aries. It was found by many authors that the results with 1 O(DxM),
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where the coefficients a0 , an , and a2n (n 5 1, 2, ..., N) F­f

­xGj
5

1
Dx SONn51

a2nfj2n 1 a0fjD1 O(DxN); uj . 0

(4)
are to be determined (for the conventional schemes) by
matching the Taylor series coefficients of various orders.
M is the order of truncation error of the finite-difference F­f

­xGj
5

1
Dx SONn51

anfj1n 1 a0fjD1 O(DxN); uj , 0.scheme, which is related to the first unmatched coefficient.
Later in this paper, it is proposed that additional con-
straints from the Fourier analysis of the scheme can be

The scheme will be Nth order.introduced to determine the coefficients. To clarify the
For example, when N 5 2, the familiar second-orderscheme terminology and concepts, some conventional

fully upwind scheme [1] is obtained:schemes derived from the Taylor series truncation are
briefly reviewed below.

Using a 2N 1 1 point stencil in Eq. (1), the Taylor series
expansions for fj6n are F­f

­xGj
5

1
2Dx

(fj22 2 4fj21 1 3fj) 1 O(Dx2); uj . 0

(5)

F­f

­xGj
5

1
2Dx

(23fj 1 4fj11 2 fj12) 1 O(Dx2); uj , 0.fj6n 5 Oy
k50

(6nDx)k

k! S­kf

­xkD
j
. (2)

2.4. Partial Upwind Schemes, Type 1There are many different schemes that can be derived
from the general formulation (1). These schemes can be When N $ 2, partial upwind schemes (type 1) can be
classified as formulated by using some additional but not all downwind

points in the approximation, i.e.,
• fully upwind schemes

• partial upwind schemes, Type 1

• partial upwind schemes, Type 2 F­f

­xGj
5

1
Dx SONn51

a2nfj2n 1 a0fj 1 OM
n51

anfj1nD ; uj . 0

(6)• centered difference schemes.

F­f

­xGj
5

1
Dx SOMn51

a2nfj2n 1 a0fj 1 ON
n51

anfj1nD ; uj , 0,2.2. Centered Difference Schemes

The use of the entire 2N 1 1 point stencil with symmetri-
cal coefficients (a2n 5 2an) would result in a centered

where M , N.
difference scheme of order 2N, which is nondissipative.

When N 5 2, the general relation (6) becomes
The constraints in deriving the centered difference

schemes are a system of 2N 1 1 linear equations:

F­f

­xGj
5

1
Dx

(a22fj22 1 a21fj21 1 a0fj 1 a1fj11); uj . 0

(7)ON
n51

(an 1 a2n) 1 a0 5 0

F­f

­xGj
5

1
Dx

(a21fj21 1 a0fj 1 a1fj11 1 a2fj12); uj , 0.ON
n51

n(an 2 a2n) 5 1

(3)
This is a subfamily of the five-point partial upwind schemes.ON

n51

nk

k!
(an 1 a2n) 5 0, k 5 2, 4, 6, ..., 2N Two well-known five-point partial upwind schemes are the

third-order upwind-biased scheme [6]

ON
n51

nk

k!
(an 2 a2n) 5 0, k 5 3, 5, 7, ..., 2N 2 1.

F­f

­xGj
5

1
6Dx

(fj22 2 6fj21 1 3fj 1 2fj11) 1 O(Dx3);
2.3. Fully Upwind Schemes

uj . 0To control aliasing error, it was suggested that the up-
wind schemes be used, which can damp the high-frequency F­f

­xGj
5

1
6Dx

(22fj21 2 3fj 1 6fj11 2 fj12) 1 O(Dx3);
(8)

components, e.g., [6]. In a fully upwind scheme, only values
at those upwind nodes are used in the formulation (1).
The formulation (1) becomes uj , 0
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and Leonard’s second-order QUICK scheme [3] F­f

­xGj
5

1
6Dx

(2fj22 2 10fj21 1 9fj 2 2fj11 1 fj12)

1 O(Dx3); uj . 0F­f

­xGj
5

1
8Dx

(fj22 2 7fj21 1 3fj 1 3fj11) 1 O(Dx2);

F­f

­xGj
5

1
6Dx

(2fj22 1 2fj21 2 9fj 1 10fj11 22fj12)

(12)

uj . 0

1 O(Dx3); uj , 0.F­f

­xGj
5

1
8Dx

(23fj21 2 3fj 1 7fj11 2 fj12) 1 O(Dx2);

(9)

uj , 0.

2.6. Upwind-Biased Schemes
The family of schemes (7) has received special attention In this paper, the focus is on a particular class of the
in CFD. The third-order upwind-biased schemes and the partial upwind schemes (type 1), in which M 5 N 2 1
second-order QUICK scheme of Leonard can be general- in the general formulation (6)—we reserve the name of
ized as [22] upwind-biased schemes for this class of schemes. The

upwind-biased schemes provide the maximum formal
order of accuracy for partial upwind schemes of Type
1 when N is chosen. Up to fifth-order upwind-biasedF­f

­xGj
5

1
2Dx

(fj11 2 fj21) 2
q

Dx
(fj11 2 3fj 1 3fj21

schemes have been used by Rai and Moin [6] for direct
simulation of turbulent channel flow and were found to2 fj22); uj . 0
be robust. In this paper, up to 11th-order accurate
upwind-biased schemes are formulated. It should beF­f

­xGj
5

1
2Dx

(fj11 2 fj21) 2
q

Dx
(2fj21 1 3fj 2 3fj11

(10)

mentioned that the first-order upwind scheme (N 5 1)
is a special case of the upwind-biased schemes and is

1 fj12); uj . 0. also a fully upwind scheme (i.e., N 5 1 in Eq. (1)). As
can be seen from Appendix 1, the upwind-biased schemes
share similar patterns in some of their coefficients, namelyFor second-order centered differencing, q 5 0, for the
that the denominator is N! for Nth-order upwind-biasedsecond-order fully upwind scheme, q 5 0.5, for Leonard’s
schemes, and the coefficient for fj11 is N! when uj ,second-order QUICK scheme, q 5 1/8, and for the third-
0, and fj21 is 2N! when uj . 0.order upwind-biased scheme, q 5 1/6. The coefficient q

The constraints in deriving these schemes arecan also be so chosen that it depends on the local Peclet
number to minimize the potential oscillations by minimiz-
ing the remote-node coefficients, while maintaining the

aN 5 0; uj . 0
positive neighbor-node coefficients in the finite-volume

a2N 5 0; uj , 0 (13)formulation; see [20]. An expression analogous to Eq. (10)
on nonuniform grids was formulated by Li and Rudman
[20]. ON

n51
(an 1 a2n) 1 a0 5 0

2.5. Partial Upwind Schemes, Type 2 ON
n51

n(an 2 a2n) 5 1
The use of the entire 2N 1 1 point stencil with asymmet-

rical coefficients can also result in a partial upwind scheme ON
n51

nk

k!
(an 1 a2n) 5 0, k 5 2, 4, 6, ..., 2N 2 2(type 2), and the upwinding effect is taken into account by

using larger absolute coefficients for upwinding points, i.e.,

ON
n51

nk

k!
(an 2 a2n) 5 0, k 5 3, 5, 7, ..., 2N 2 1. (14)

ua2Nu . uaNu; uj . 0
(11)

ua2Nu , uaNu; uj , 0.
It can be seen from (14) that both the upwind-biased
scheme of order 2N 2 1 and the corresponding centered
difference scheme of order 2N share the same constraintsKawamura and Kuwahara’s third-order partial upwind

scheme [10] belongs to this family for N 5 2: on an 2 a2n , i.e.,
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3.1. Modified WavenumberON
n51

n(an 2 a2n) 5 1

(15) Over the stencil domain (2L/2, L/2), we assume that
the dependent variable f is periodic, Dx 5 L/2N. A FourierON

n51

nk

k!
(an 2 a2n) 5 0, k 5 3, 5, 7, ..., 2N 2 1. representation of f(x) in the interval [ j 2 N, j 1 N] is

The total number of the equations in (15) is N and the f(x) 5 ON
l52N

f̂le(2filx/L) , (17)
total number of variables (an 2 a2n) is also N. Thus, the
solutions of equations (15) are the same for both the up-
wind-biased scheme and the corresponding centered differ- where i 5 Ï21 is the imaginary unit. Be aware that f(x)
ence scheme. This provides an important characteristic for is real-valued,
the upwind-biased schemes as compared to the corre-
sponding centered differencing schemes in their dispersion

f̂l 5 f̂*2l
(18)characteristics. It will be shown later that the upwind-

biased schemes have the same dispersion characteristics f̂0 5 f̂*0 ,
as the corresponding centered differencing scheme. Thus,
the upwind-biased scheme of order 2N 2 1 can be consid-

where * is the complex conjugate.ered a correction to the centered difference scheme of
By introducing a scaled wavenumber kl for 0 # l # Norder 2N that adds some numerical dissipation.

and a scaled coordinate xIf ­f/­x represents the exact first derivative and
[­f/­x]U

N represents the upwind-biased finite-difference
formulation of Nth order, Taylor expansion analysis shows kl 5

2flDx
L

5
fl
N

(19)
that for uj . 0

x 5
x 2 xj

Dx­f

­x
5 F­f

­xGU

1
2

1
2

Dx
­2f

­x2 1 O(Dx2)

Eq. (17) becomes­f

­x
5 F­f

­xGU

3
1

1
12

Dx3 ­4f

­x4 1 O(Dx4)

f(x) 5 ON
l50

f̂leiklx . (20)­f

­x
5 F­f

­xGU

5
2

1
60

Dx5 ­6f

­x6 1 O(Dx6) (16)

The exact first derivative of the variable f is­f

­x
5 F­f

­xGU

7
1

1
280

Dx7 ­8f

­x8 1 O(Dx8)

­f

­x
5 ON

l50
iklf̂leiklx . (21)

­f

­x
5 F­f

­xGU

9
2

1
1260

Dx9 ­10f

­x10 1 O(Dx10).

The differencing scheme (1) with the scaled coordinate
3. FOURIER ANALYSIS OF 1D can be written as

DISCRETIZATION ERROR

The above truncation error analysis does not represent F­f

­xGj
5 ON

n51
a2nfj2n 1 a0fj 1 ON

n51
anfj1n 1 O(DxM), (22)

all the characteristics of a scheme. Because many fluid
flows exhibit wave-like motions, a Fourier analysis of a
scheme can provide additional information about its reso- where
lution characteristics. The question is whether a scheme
represents the full range of length scales on a given mesh.

xj6n 5 6n, xj 5 0
The classical Fourier analysis of numerical discretization
schemes has been used by many authors, e.g., [23]. Inspired

fj6n(xj6n) 5 ON
l50

f̂leiklxj6n 5 ON
l50

f̂le6inkl (23)by Lele’s work, additional constraints provided by the Fou-
rier analysis are used here to improve the resolution char-
acteristics of the high-order upwind-biased schemes that fj(xj) 5 ON

l50
f̂l .

are formulated in Section 2.6.
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Thus, the numerical approximation of the first derivative Applying the above finite-difference schemes (1) in the
advection equationof the variable f is

­f

­t
1

­f

­x
5 0 (28)F­f

­xGj
5 ON

l50
FON

n51
a2ne2ikln 1 a0 1 ON

n51
aneinklG

we obtain
5 ON

l50
FON

n51
((an 1 a2n) cos(nkl)) 1 a0 (24)

Fdf̂l

dt Gj
5 2(iuk*r 1 uk*i )f̂l . (29)

1 i ON
n51

((an 2 a2n) sin(nkl))G f̂l .

Thus
Comparing the exact solution (21) to the approximation
(24), we see that the wavenumber k in the solution (21) f̂l(t) 5 f̂l(0)e2uikr*te2uki*t. (30)
is modified in the approximation (24). If we write the
approximate solution (24) as For the advection equation with diffusion

­f

­t
1 u

­f

­x
5 e

­2f

­x2 . (31)F­f

­xGj
5 ON

l50
ik*f̂leiklxj , (25)

Assume that the initial condition and solution form are
where k* is the modified wavenumber,

f(x, t) 5 ON
l50

f̂l(t)eiklx. (32)
k* 5 ON

n51
[(an 2 a2n) sin(nkl)]

(26) Equation (31) becomes
2 i SON

n51
[(an 1 a2n) cos(nkl)] 1 a0D.

df̂l

dt
5 2(iukl 1 ek2

l )f̂l . (33)

Generally, the modified wavenumber k* is a complex func-
tion. The real part k*r and the imaginary part k*i are associ- The solution of Eq. (31) with initial condition (32) is
ated with the dispersion error (phase error) and the dissipa-
tive error (amplitude error), respectively, as will be shown

f̂l(t) 5 f̂l(0)e2iuklte2ek2
l t. (34)

in the next section.

Comparing solutions (34) and (30), it is obvious k*r is a
modified wavenumber and k*i is associated with numericalk*r 5 ON

n51
[(an 2 a2n) sin(nkl)]

dissipation. The following numerical dissipation can be de-
(27) fined:

k*i 5 ON
n51

[(an 1 a2n) cos(nkl)] 1 a0 .

e* 5 u
k*i
k2

l
. (35)

Due to the symmetry of coefficients (an 52a2n), we have
k*i 5 0 for all the centered difference schemes. Thus, all

This definition provides a possible way of studying howthe centered difference schemes are nondissipative.
the numerical dissipation varies with wavenumber.

An alternative way of studying the numerical dispersion
3.2. Dispersion Error and Dissipation Error to the use of the real part of the modified wavenumber

is to use the concept of numerical phase speed. If theThe above definition of the dispersion error and the
approximate solution (30) is written asdissipation error can be easily understood by examining

the exact solution of the advection equation with diffusion
and the numerical solution of the advection equation. f̂l(t) 5 f̂l(0)e2iu*klte2uki*t, (36)
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3.3. Analysis of Some Conventional Schemes

Figure 1 shows the real part of the modified wavenumber
versus wavenumber for the first-order upwind scheme, sec-
ond-order fully upwind scheme (Eq. (5)), the QUICK
scheme (Eq. (9)), and the third-order upwind-biased
scheme (Eq. (8)). The diagonal solid line represents the
dispersion characteristics of the exact solution. It can be
seen that the higher-order schemes generally exhibit better
dispersion characteristics than lower-order schemes. The
second-order fully upwind scheme enters the upper trian-
gle. This indicates that the numerical phase speeds for
wavenumbers in the range (0.3, 2.1) are faster than the
real phase speed for the second-order fully upwind scheme.
For other schemes in Fig. 1, the numerical phase speeds
are slower than or equal to the real phase speed.

The fact that numerical phase speeds can be different
FIG. 1. The numerical dispersion errors as indicated by the real part from the real phase speed gives rise to the familiar oscilla-

of the modified wavenumber versus wavenumber for some conventional
tions around discontinuities [24]. Li and Rudman [20] stud-finite-difference schemes, including the first-order upwind scheme, sec-
ied the rotation of a scalar cone and observed that oscilla-ond-order fully upwind scheme, QUICK scheme, and third-order upwind-

biased scheme. tions occur in front of the cone for the second-order fully
upwind scheme and behind the cone for QUICK. Perspec-
tive plots of the predicted results of a scalar cone 10 units
high after one full rotation are shown in Fig. 2 for the twowhere u* is defined as the numerical phase speed, it is easy
schemes. Figure 1 shows that this difference is due to theto show that
waves in the range (0.3, 2.1) traveling slower for the
QUICK scheme and faster for the second-order fully up-
wind scheme.u*

u
5

k*r
kl

. (37)
The imaginary part of the modified wavenumber versus

wavenumber for these conventional schemes are shown in
Fig. 3. The QUICK scheme (Eq. (9)) and the third-orderThus, the dispersion error resulting from a finite-difference

scheme can also be seen from the modified phase speed upwind-biased scheme (Eq. (8)) are able to provide very
small numerical dissipation for a much wider low-wave-u*. The numerical phase speeds vary for different wave-

numbers. number range than the first-order upwind scheme. At the

FIG. 2. Perspective plots of the predicted results of a scalar cone 10 units high after one full rotation with the QUICK scheme (left) and the
second-order fully upwind scheme (SOU) (right). The maximum Courant number used is 0.09. The grid is 64 3 64. Rotation is counterclockwise.
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FIG. 4. The numerical dispersion errors as indicated by the real partFIG. 3. The numerical dissipation errors as indicated by the imaginary
of the modified wavenumber versus wavenumber for different upwind-part of the modified wavenumber versus wavenumber for some conven-
biased finite-difference schemes.tional finite-difference schemes, including the first-order upwind scheme,

second-order fully upwind scheme, QUICK scheme, and third-order up-
wind-biases scheme.

Generally, the higher the order of a scheme, the less the
numerical dissipation in Fig. 5. If no dissipation is needed,
then upwind schemes are not a suitable option, and cen-low-wavenumber range, the second-order fully upwind
tered difference schemes should be considered.scheme performs much better than the first-order scheme.

It is easy to prove that the upwind-biased scheme ofHowever, it introduces much larger dissipation for the
order 2N 2 1 has the same dispersion characteristics inhigh-wavenumber range, which can be of some advantage
Fourier space as that of the centered difference scheme ofif artificial numerical dissipation is needed in the high-
order 2N. This is because the same constraints on (an 2wavenumber range, as explained in the Introduction.
a2n) are used in both the upwind-biased scheme of orderThe accuracy assessment above of the second-order fully
2N 2 1 and the corresponding centered difference schemeupwind scheme and the second-order QUICK scheme
of order 2N. As can be seen from Eq. (27), the dependencebased on the Fourier analysis agrees well with the numeri-

cal assessment in [20]. This illustrates that the Fourier
analysis is a powerful tool for finite-difference schemes. In
the next section, a Fourier analysis of Eq. (27) will be used
to construct some new finite-difference schemes.

4. WAVENUMBER-EXTENDED SCHEMES

4.1. Fourier Analysis of Upwind-Biased Schemes

In Figs. 4 and 5, the real and the imaginary parts kr* and
ki* are shown for different upwind-biased schemes which
are formulated in Section 2.6 and summarized in Appen-
dix 1.

Generally, the higher the order of an upwind-biased
scheme, the better its resolution characteristics will be. The
higher-order upwind-biased schemes generally introduce
much less (or no) numerical dissipation for the low-wave-
number range. For problems in which numerical dissipa-
tion is needed for the high-wavenumber range, one might
argue that these schemes introduce numerical dissipation FIG. 5. The numerical dissipation errors as indicated by the imaginary
at just the right place, although the level of the numerical part of the modified wavenumber versus wavenumber for different up-

wind-biased finite-difference schemes.dissipation may not be ideal, depending on the problem.
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of the dispersion characteristics on the scheme coefficients
is only (an 2 a2n). It should also be mentioned that the
centered differencing schemes are nondissipative; i.e.,
ki* 5 0. Thus, in the Fourier space, the upwind-biased
schemes of order 2N 2 1 can be considered as resulting
from the corresponding centered difference scheme of or-
der 2N with the addition of numerical dissipation.

4.2. Development of Wavenumber-Extended Schemes

The general expression of the modified wavenumber
(Eq. (27)) can be used to provide some additional con-
straints in constructing new upwind-biased schemes. The
idea is to extend the accurate range of wavenumbers that
the scheme can resolve, i.e., to extend the scheme to follow
as closely as possible to the spectral resolution shown in
Fig. 4. This can be done by replacing the last equations of
the constraints (Eq. 14) with new constraints resulting from FIG. 6. The numerical dispersion errors as indicated by the real part of

the modified wavenumber versus wavenumber for different wavenumber-the Fourier analysis.
extended upwind-biased finite-difference schemes.There are at least two approaches to formulating the

new constraints from the Fourier analysis. Lele’s wave-
number fit approach [7] is to choose a wavenumber kl1 or
several wavenumbers and fit the modified wavenumbers optimization range (c 5 1) will not produce a meaningful
to the corresponding true wavenumbers. The following optimized scheme. The details of the integrated error mini-
constraint is imposed: mization method and choice of c used in this paper are

summarized in Appendix 2.
kr*(kl1) 5 kl1 . (38) The following constraints are used here when deriving

the wavenumber-extended upwind-biased schemes:
kl1 is so chosen that the resulting wavenumber-extended
schemes follow the spectral resolution as close as possible. aN 5 0; uj . 0
Generally, a range of possible kl1 values is tested to choose

a2N 5 0; uj , 0the one which gives the best resolution performance of
the resulting scheme. This process is somewhat arbitrary. ON

n51
(an 1 a2n) 1 a0 5 0Lele [7] used this approach to improve the resolution char-

acteristics of a family of compact schemes.
The second approach is an integrated error minimization ON

n51
n(an 2 a2n) 5 1

method, proposed by Tam and Webb [21]. In this method,
(41)the conditions that an integrated error is a minimum are

used as the new constraints. For example, an integrated ON
n51

nk

k!
(an 1 a2n) 5 0, k 5 2, 4, 6, ..., 2N 2 2

error can be defined as

ON
n51

nk

k!
(an 2 a2n) 5 0, k 5 3, 5, 7, ..., 2N 2 3

Ebr 5 Ecf

0
(kr* 2 k)2 dk, (39)

­E
­a21

5 0.where the factor c (0 # c # 1) defines the optimization
range of wavenumbers. The conditions that Er is a mini-
mum are The resulting new schemes are of 2N 2 2 formal order,

which is one order lower than the corresponding upwind-
biased schemes. However, their wavenumber resolution­E

­aJ
5 0, J 5 2N to N. (40)

ranges are greatly improved. Appendix 3 documents the
wavenumber-extended upwind-biased schemes developed.

The real part of the modified wavenumber k*r for theIn this method, the choice of the factor c is very important.
As the scaled modified wavenumber approaches zero when new schemes are shown in Fig. 6. It can be seen that the

resolution characteristics do not depend only on the formalthe true wavenumber is f, it can be shown that a full
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nary part of the modified wavenumber: Lele’s approach
and Tam and Webb’s integrated error minimization ap-
proach. For demonstration purposes, Lele’s approach is
used for the second class of schemes. The details of
applying the Tam and Webb approach for the imaginary
part of the modified wavenumber are described in Appen-
dix 2. We will reduce the formal accuracy further to 2N 2
3 by freeing one more constraint from the Taylor expansion
analysis. The constraints in deriving these new wave-
number-extended schemes are

aN 5 0; uj . 0

a2N 5 0; uj , 0

ON
n51

(an 1 a2n) 1 a0 5 0

FIG. 7. The numerical dissipation errors as indicated by the imaginary
part of the modified wavenumber versus wavenumber for different wave- ON

n51
n(an 2 a2n) 5 1

(42)
number-extended upwind-biased finite-difference schemes including a
numerical dissipation constraint.

ON
n51

nk

k!
(an 1 a2n) 5 0, k 5 2, 4, 6, ..., 2N 2 4

accuracy of a high-order upwind scheme. The second-order
wavenumber-extended upwind scheme has a wavenumber ON

n51

nk

k!
(an 2 a2n) 5 0, k 5 3, 5, 7, ..., 2N 2 3resolution capacity almost the same as the fifth-order up-

wind-biased scheme. The second-order wavenumber-ex-
k*r (kl1) 5 kl1tended upwind scheme uses only a five-point stencil, while

the fifth-order upwind-biased scheme uses a seven-point k*i (kl2) 5 c2 ,
stencil. Similar conclusions can be drawn for other wave-
number-extended schemes shown in Fig. 6.

The question is, what price do we pay for the improved where the wavenumber kl1 is so chosen that the resulting
wavenumber-extended schemes follow the spectral resolu-resolution characteristics of a wavenumber-extended up-

wind scheme? Figure 7 shows the imaginary part of the tion as close as possible, and the wavenumber kl2 is so
chosen that the resultant wavenumber-extended schemesmodified wavenumber which is associated with the dissipa-

tion error. For the wavenumber-extended schemes (order have the imaginary part of the modified wavenumber at
kl2 as the specified value of c2. The new schemes developed2N 2 2) derived, there is an increase of the dissipation

error in the high-wavenumber range compared to the cor- are documented in Appendix 3.
Some of the resulting schemes are shown in Figs. 8 andresponding upwind-biased scheme (order 2N 2 1). How-

ever, the increase of numerical dissipation in the low-wave- 9. The following values of kl1, kl2, and c2 are used: for the
third-order wavenumber-extended upwind-biased schemenumber range is very small. It is also seen from Figs. 7

and 3 that the second-order wavenumber-extended upwind 1 (3rd Extd1), kl1 5 1.7, kl2 5 3.1, c2 5 0.0, and N 5 3;
for the third-order wavenumber-extended upwind-biasedscheme provides much less numerical dissipation for the

high-wavenumber range than the second-order fully up- scheme 2 (3rd Extd2), kl1 5 1.7, kl2 5 3.1, c2 5 0.25, and
N 5 3; and for the seventh-order wavenumber-extendedwind scheme. As discussed in the Introduction, some nu-

merical dissipation is needed in the high-wavenumber upwind-biased scheme 1 (7th Extd1), kl1 5 2.2, kl2 5 3.1,
c2 5 0.25, and N 5 5.range for some flow problems. The decision that a numeri-

cal modeler should always make is how much numerical The dispersion characteristics of the new schemes in Fig.
8 are very similar to those of their counterparts in whichdissipation is needed. The above wavenumber-extended

upwind schemes provide some additional alternatives for only the dispersion range is extended in Fig. 6. A disturbing
feature of these new schemes based on the constraints (42)adjusting numerical dissipation.

It is also possible to specify an additional constraint on is that the imaginary part of the modified wavenumber
becomes negative for some wavenumber ranges (see Fig.the imaginary part of the modified wavenumber in the

constraints (41). There are also two approaches available 9). A stable scheme must at least have e* . 0. Thus, these
schemes may not be practically applicable to real problems.for introducing the additional constraint from the imagi-
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FIG. 10. Comparison of three schemes on the linear convection equa-FIG. 8. The numerical dispersion errors as indicated by the real part of
tion for a propagating discontinuity.the modified wavenumber versus wavenumber for different wavenumber-

extended upwind-biased finite-difference schemes including a numerical
dissipation constraint.

with the second-order fully upwind scheme, the third-order
upwind-biased scheme and the second-order wavenumber-
extended scheme. Both problems are governed by the 1DThus, the schemes based on the constraints (42) are not
advection equation. The computational domains for bothpursued.
test problems are (0, 2f), which is then discretized with 200-
grid intervals. Both the explicit forward time-difference4.3. Two Test Problems
scheme and/or the fourth-order Runge–Kutta time ad-

It should be mentioned that the results of Fourier analy- vancing scheme are used for the temporal term. As we are
sis of global errors only applies to problems with periodic interested primarily in evaluating the spatial formulation,
boundary conditions. With other forms of boundary condi- a small Courant number of 0.01 is used in all the calcula-
tions, some numerical tests with proper boundary schemes tions to minimize the numerical error from the temporal
will be necessary. Two simple test problems are tested here discretization. All the results shown below will be the solu-

tion after 12,800 time steps. All spatial schemes considered
here use a five-point stencil.

The first test is the propagation of a discontinuity, which
contains essentially high-order harmonics. The results are
shown in Fig. 10. All the three schemes generate oscilla-
tions, due to high-frequency components traveling numeri-
cally with different speeds from that of the discontinuity.
For the second-order fully upwind scheme, the dominant
high-frequency components travel much faster; thus the
oscillations occur in front of the discontinuity. For the
third-order upwind-biased scheme, these high-frequency
components travel much slower and the oscillations occur
behind the discontinuity. For the new second-order wave-
number-extended scheme, the oscillations occur both in
front of the discontinuity and behind. However, the domi-
nant high-frequency components travel with speeds much
closer to that of the discontinuity; thus the oscillations are
also much closer to the discontinuity than the other two
conventional schemes. The maximum magnitude of the

FIG. 9. The numerical dissipative errors as indicated by the imaginary
oscillation for the new scheme is much smaller than thatpart of the modified wavenumber versus wavenumber for different wave-
of the third-order upwind-biased scheme, and similar tonumber-extended upwind-biased finite-difference schemes including a

numerical dissipation constraint. that of the second-order fully upwind scheme. Balancing
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the oscillation magnitude and phase shift, the new second- where s 5 x cos u 1 y sin u and s 5 s/Dx, x 5 x/Dx and
y 5 y/Dx, Dx is the mesh size in both the x and y directions.order wavenumber-extended scheme produces a better so-

lution than the other two schemes tested. As mentioned The exact directional derivation is
in the Introduction, the FCT flux limiter of Zalesak can
be used to eliminate oscillations, which is not shown here. ­f

­s
5 cos u

­f

­x
1 sin u

­f

­y
5 ON

l 5 0
iklf̂eikls. (45)In order to test a selected value of the wavenumber, the

propagation of a sinusoidal wave packet is chosen as the
second test problem. We chose two wavenumbers, f/20

If the difference scheme (1) is applied in both the x andand f/10. The results are shown in Figs. 11 and 12. For a
y directionsCourant number of less than 0.04, almost identical results

were obtained by both the explicit forward time-difference
scheme and the fourth-order Runge–Kutta time advancing
scheme. The results shown in Figs. 11 and 12 are for a F­f

­sGj
5 cos u F­f

­xGj
1 sin u F­f

­yGmCourant number of 0.01. These results seem to show that
there is almost no error resulting from temporal term dis-

5 cos u FON
n51

a2nfj2n,m 1 a0fj,m 1 ON
n51

anfj1n,mG (46)cretization. At the low wavenumber, all three schemes
produce rather accurate results. Similar to the solutions of
the first test problem, some oscillations occur at the slope

1 sin u FON
n51

a2nfj,m2n 1 a0fj,m 1 ON
n51

anfj,m1nG,discontinuity of the sinusoidal wave in the beginning or
the end of the wave packet. As the wavenumber increases,
the advantages of the second-order wavenumber-extended

where xj6n 5 6n at xj 5 0, and ym6n 5 6n at ym 5 0. Wescheme are clearly seen. The phase shifts of this new
also havescheme for the wavenumbers considered are the minimum

in the results of all three schemes, and the prediction of
the wave magnitude by the new scheme is also better than

fj6n,m(xj6n , ym) 5 ON
l50

f̂leikl(xj6n cos u1y sin u) 5 ON
l50

f̂le6inkl cos uthat of the other two schemes, including a centered differ-
ence scheme. It should be mentioned that the analysis
method in Section 3 uses a semidiscrete approximation. To

fj,m6n(xj , ym6n) 5 ON
l50

f̂leikl(xj cos u1ym6n sin u)

(47)
optimize the resolution characteristics of finite-difference
schemes, both discretization schemes of the space and time
derivatives need to be considered. While this paper consid- 5 ON

l50
f̂le6inkl sin u

ers the upwind-biased schemes for the first-order space
derivative, some optimized time discretization schemes
have been developed and discussed by Tam and Webb [21]. fj,m(xj , ym) 5 ON

l50
f̂l .

Thus
5. FOURIER ANALYSIS OF 2D

DISCRETIZATION ERROR

F­f

­ŝGj
5 cos uON

l50
f̂l SON

n51
a2ne2inkl cos u 1 a0 1 ON

n51
aneinkl cos uDThe above analysis applies only when the velocity direc-

tion follows the coordinate direction. In this section,
isotropy errors of the formulated schemes on a two-di- 1 sin uON

l51
f̂l SON

n50
a2ne2inkl sin u 1 a0 1 ON

n51
aneinkl sin uD

mensional square mesh are analyzed. As in the one-dimen-
sional Fourier analysis, it can be shown that a Fourier

5 cos uON
l50
SON

n51
[(an 1 a2n) cos(nkl cos u)]

(48)
representation of f(s) is

1 a0 1 ON
n51

[(an 2 a2n)i sin(nkl cos u)]D f̂l

f(s) 5 ON
l50

f̂leikls (43)

1 sin uON
l50
SON

n51
[(an 1 a2n) cos(nkl sin u)]

or
1 a0 1 ON

n51
[(an 2 a2n)i sin(nkl sin u)]D f̂l;

f(x, y) 5 ON
l50

f̂leikl(x cos u1y sin u), (44)
that is,
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FIG. 11. Comparison of three schemes on the linear convection equation for a propagating sinusoidal wave packet for three wavenumbers. The
explicit forward time-difference scheme is used. The Courant number is 0.01.

FIG. 12. Comparison of three schemes on the linear convection equation for a propagating sinusoidal wave packet for three wavenumbers. The
fourth-order Runge–Kutta time advancing method is used. The Courant number is 0.01.
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Figure 13 plots the ratio between the modified wavenum-F­f

­ŝGj
5 ON

l50
Scos u FON

n51
((an 1 a2n) cos(nkl cos u)) 1 a0G ber and the real wavenumber (k*r /kl) for different upwind-

biased schemes. All the schemes are anisotropic. The
largest error always occurs along the lines at 08 and 908.

1 sin u FON
n51

((an 1 a2n) cos(nkl sin u)) 1 a0GD f̂l

(49)
For the low-wavenumber range, e.g., kl , f/3, the anisot-
ropy errors become smaller as the order of the schemes
becomes higher. However, for high wavenumbers, e.g.,

1 ON
l50
Scos u ON

n51
((an 2 a2n)i sin(nkl cos u)) kl 5 f/2, the scheme becomes more anisotropic for higher-

order schemes.
The wavenumber-extended schemes change the disper-

1 sin u ON
k51

((an 2 a2n)i sin(nkl sin u))D f̂l . sive isotropy error of the upwind-biased schemes very little
(see Fig. 14). Generally, for the wavenumber-extended
schemes, the isotropy error is improved slightly for theComparing the exact solution (45) and the approximation
low-wavenumber range, and becomes slightly worse for(49), the modified wavenumber k* in the s coordinate is
the high-wavenumber range. The above analysis shows
that the waves travel numerically not only with different

k*s 5 k*x cos u 1 k*y sin u, (50) phase speeds for different wavenumbers, but also with
different phase speeds for different directions.

In Figs. 15 and 16, the direction-dependent behaviors ofwhere
the numerical dissipation are shown. A slightly different
numerical dissipation indicator is used. We use exp(2k*i )
to indicate the damping of f̂l(t) (see Eq. (36)). The exactk*x 5 ON

n51
[(an 2 a2n) sin(nkl cos u)]

solution should be a perfect quarter-circle of radius unity
for all wavenumbers. The results show that all the schemes
exhibit anisotropic behavior of numerical dissipation, as2 i SON

n51
[(an 1 a2n) cos(nkl cos u)] 1 a0D

(51) expected. The largest numerical dissipation for all the up-
wind schemes (except kl 5 f for the first-order upwinding

k*y 5 ON
n51

[(an 2 a2n) sin(nkl sin u)] scheme) occurs at u 5 08 or 908, which first seems to contra-
dict the analyses of de Vahl Davis and Mallinson [25] and
Demuren [26]. However, in the analysis of de Vahl Davis

2 i SON
n51

[(an 1 a2n) cos(nkl sin u)] 1 a0D. and Mallinson [25], it is the cross-stream artificial diffusiv-
ity for the first-order upwind scheme which is a maximum
at u 5 458. The analysis here seems to apply only to the

Again, k* is a complex function. The real part and the streamwise artificial dissipation, which is a maximum at u 5
imaginary part are associated with the dispersion error and 08 or 908 and falls to a minimum at u 5 458. This streamwise
the dissipation error, respectively: artificial dissipation behavior agrees well with the analysis

of de Vahl Davis and Mallinson [25]. The anisotropic be-
havior of numerical dissipation becomes strongest for thek*r 5 cos u ON

n51
[(an 2 a2n) sin(nkl cos u)]

high-wavenumber range. The numerical dissipation is very
small for the low-wavenumber range for the higher-order
schemes. There is a slight reduction in the magnitude of1 sin u ON

n51
[(an 2 a2n) sin(nkl sin u)]

(52) the numerical dissipation indicator for the wavenumber-
extended schemes; however, the anisotropy level also wors-
ens slightly.k*i 5 cos u SON

n51
[(an 1 a2n) cos(nkl cos u)] 1 a0D

The numerical dissipation indicator for the schemes 3rd
Extd1, 3rd Extd2, and 7th Extd1 behaves as expected, with
values larger than unity for some wavenumber ranges (not1 sin u SON

n51
[(an 1 a2n) cos(nkl sin u)] 1 a0D.

shown). This indicates that these schemes are not stable.
No attempt is directed at improving the isotropy error,

although this may be done by minimizing the angle depen-Again, the coefficient dependence of the real part of the
modified wavenumber is only (an 2 a2n). Thus, the isotropy dence of expression (52). One possible approach is to use

more upwinding diagonal points. This is the idea behinderror of the dispersion property of the upwind-biased
schemes of order 2N 2 1 is the same as that of the centered the skew upwinding schemes [27]. Zingg and Lomax [12]

optimized the finite-difference schemes on regular triangu-difference scheme of order 2N.



WAVENUMBER-EXTENDED UPWIND-BIASED SCHEMES 249

FIG. 13. Polar plots of the ratio of numerical phase speed to the exact speed for different upwind-biased finite-difference schemes on a uniform
square grid. The phase speeds for four scaled wavenumbers, f/2, f/2, f/3, f/4, and f/8, are shown. The two polar coordinates are the ratio of
numerical phase speed to the exact speed and the angle of the streamline with respect to the x-axis, respectively.

FIG. 14. Polar plots of the ratio of numerical phase speed to the exact speed for different wavenumber-extended upwind-biased finite-difference
schemes on a uniform square grid. The phase speeds for four scaled wavenumbers, f/2, f/3, f/4, and f/8, are shown. The two polar coordinates
are the ratio of numerical phase speed to the exact speed and the angle of the streamline with respect to the x-axis, respectively.



250 YUGUO LI

FIG. 15. Polar plots of the numerical dissipation indicator for different upwind-biased finite-difference schemes on a uniform square grid. The
two polar coordinates are the numerical dissipation indicator and the angle of the streamline with respect to the x-axis, respectively.

FIG. 16. Polar plots of the numerical dissipation indicator for different wavenumber-extended upwind-biased finite-difference schemes on a
uniform square grid. The two polar coordinates are the numerical dissipation indicator and the angle of the streamline with respect to the x-
axis, respectively.
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lar grids, which gives six immediate neighbor points for a the case ui . 0 only and those for ui , 0 are analogous to
the former.given node.

• The first-order upwind scheme:6. CONCLUSIONS

A number of new wavenumber-extended high-order up-
wind-biased schemes are presented. These schemes are S­f

­xD5
1

1! Dx
(fi 2 1!fi21) (53)

able to accurately resolve a much larger wavenumber range
than the conventional high-order upwind-biased schemes, fi21/2 5 fi21
which is shown by both the Fourier analysis and two test

fi11/2 5 fi . (54)problems. As the formulation of these wavenumber-ex-
tended schemes is similar to the second-order or third-
order upwind schemes used in current finite-difference and • The third-order upwind-biased scheme:
finite-volume CFD codes, the implementation and applica-
tion of the wavenumber-extended schemes are straightfor-
ward. Lele [7] anticipated that in general difference ap- S­f

­xD5
1

3! Dx
(fi22 2 3!fi21 1 3fi 1 2fi11) (55)

proximations, a lower-order scheme can have better
resolution characteristics than a higher-order scheme. The

fi21/2 5
1
3!

(2fi22 1 5fi21 1 2fi)development of the schemes in this paper also confirms
this anticipation in the context of high-order upwind-bi-
ased schemes.

fi11/2 5
1
3!

(2fi21 1 5fi 1 2fi11). (56)The new wavenumber-extended high-order upwind-bi-
ased schemes are developed by using some additional con-
straints from the classical Fourier analysis in the scheme

• The fifth-order upwind-biased scheme:
construction process. Both the wavenumber- and the direc-
tion-dependent dispersion and dissipation characteristics
are analyzed for the conventional high-order upwind S­f

­xD5
1

5! Dx
(24fi23 1 30fi22 2 5!fi21schemes up to 11th order. The constraints from the Fourier

analysis in constructing the wavenumber-extended upwind
1 40fi 1 60fi11 2 6fi12) (57)schemes provide some better overall quantitative control

of numerical dispersion and dissipation. The encouraging
fi21/2 5

1
5!

(4fi23 2 26fi22 1 94fi21 1 54fi 2 6fi11)test results presented in this paper suggest that the devel-
oped 2nd- and 4th-order wavenumber-extended upwind-
biased schemes provide some alternatives with much better fi21/2 5

1
5!

(4fi22 2 26fi21 1 94fi 1 54fi11 2 6fi12). (58)
resolution characteristics for replacing the conventional
2nd- or 3rd-order upwind schemes in finite-difference and
finite-volume simulations of practical time-dependent This scheme was first formulated by Rai [8]. The scheme
flows. has also been used for direct Navier–Stokes solutions [6]

and for use with k 2 « turbulence models [9].
APPENDIX 1

• The seventh-order upwind-biased scheme:
A Summary of Upwind-Biased

Finite-Difference Schemes S­f

­xD5
1

7! Dx
(36fi24 2 336fi23 1 1512fi22 2 7!fi21The following upwind-biased finite-difference schemes

are derived based on the constraints defined in Eq. (14).
1 1260fi 1 3024fi11 2 504fi12 1 48fi13) (59)The first-order upwind scheme is a special case, but is

included here. The schemes are constructed manually by
fi21/2 5

1
7!

(236fi24 1 300fi23 2 1212fi22first solving for an 2 a2n, and then a0 and an 1 a2n. The
schemes are also constructed by solving the system of linear

1 3828fi21 1 2568fi 2 456fi11 1 48fi12)equations that resulted from the constraint relations with
a simple solver for linear equations. As in some finite-

fi11/2 5
1
7!

(236fi23 1 300fi22 2 1212fi21volume formulations, the cell face value of the variable is
used and correspondingly their interpolation formulas are

1 3828fi 1 2568fi11 2 456fi12 1 48fi13). (60)also documented here. The schemes will be presented for
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• The ninth-order upwind-biased scheme:

S­f

­xD5
1

9! Dx
(2576fi25 1 6480fi24 2 34,560fi23

1 120,960fi22 2 9!fi21 1 72,576fi 1 241,920fi11

2 51,840fi12 1 8640fi13 2 720fi14) (61)

fi21/2 5
1
9!

(576fi25 2 5904fi24 1 28,656fi23

2 92,304fi22 1 270,576fi21 1 198,000fi

2 43,920fi11 1 7920fi12 2 720fi13)

fi11/2 5
1
9!

(576fi24 2 5904fi23 1 28,656fi22

FIG. 17. The numerical dissipative errors as indicated by the imagi-2 92,304fi21 1 270,576fi 1 198,000fi11
nary part of the modified wavenumber versus wavenumber for three
‘‘optimized’’ upwind-biased finite-difference schemes with different opti-2 43,920fi12 1 7920fi13 2 720fi14). (62)
mization range factor c values.

• The 11th-order upwind-biased scheme:

we obtainS­f

­xD5
1

11! Dx
(14,400fi26 2 190,080fi25 1 1,188,000fi24

Er 5 Ecf

0
Hk 2 ON

n51
[(an 2 a2n) sin(nkl)]J2

dk. (65)
2 4,752,000fi23 1 14,256,000fi22 2 11!fi21

1 6,652,800fi 1 28,512,000fi11 2 7,128,000fi12
After some simple algebraic manipulation, the minimum

1 1,584,000fi13 2 237,600fi14 1 17,280fi15) (63) condition of (40) becomes

fi21/2 5
1

11!
(214,400fi26 1 175,680fi25 2 1,012,320fi24 Ecf

0
Fk 2 ON

n51
(an 2 a2n) sin(nk)G sin(Jk) dk 5 0,

(66)
1 3,739,680fi23 2 10,516,320fi22 1 29,400,480fi21

J 5 2N to N.
1 22,747,680fi 2 5,764,320fi11 1 1,363,680fi12

2 220,320fi13 1 17,280fi14) Equation (66) provides a system of linear algebraic equa-
tions which can be used for additional constraints in deriv-

fi21/2 5
1

11!
(214,400fi25 1 175,680fi24 2 1,012,3204fi23 ing the wavenumber-extended schemes. If all the linear

algebraic equations in (66) are not used, then a proper
choice of J is very important. For the wavenumber-ex-1 3,739,680fi22 2 10,516,320fi21 1 29,400,480fi

tended upwind-biased schemes of 2N 2 2 formal order,
1 22,747,680fi11 2 5,764,320fi12 1 1,363,680fi13 only one equation is needed from (66). Numerical experi-

ments show that J 5 21 is the best choice.2 220,320fi14 1 17,280fi15). (64)
We take the example of deriving the eighth-order wave-

number-extended upwind-biased scheme to demonstrateNote: 1! 5 1, 3! 5 6, 5! 5 120, 7! 5 5040, 9! 5 362,880,
the choice of the optimization range factor c. In Fig. 17,and 11! 5 39,916,800.
three optimized schemes are presented for three different
c values. The scheme obtained with a large c value of

APPENDIX 2 0.89 produces a considerable deviation of the modified
wavenumber from the true wavenumber in the high-wave-

The Integrated Error Minimization Approach
number range starting from intersection point D. A small
c value of 0.49 is not able to exploit the full potential of theSubstituting the real part of the modified wavenumber,

kr* (27), into the definition of the integrated error, Er (39), optimized scheme. Although the range of wavenumbers, in
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which the optimized scheme sticks to the exact solution, used and correspondingly their interpolation formulas are
also documented here. The schemes will be presented forbecomes wider for c 5 0.49, the overall improvement of

the resolution characteristics is still not the optimum. By the case ui . 0 only and those for ui , 0 are analogous to
the former.numerical experiments, a c value of 0.69 was found to be

the optimum. Similar experiments were carried out for all
• The second-order wavenumber-extended upwind-other schemes. The following optimum c values were

biased scheme:found to give the best results: c 5 0.42 for N 5 2, c 5
0.55 for N 5 3, c 5 0.65 for N 5 4, and c 5 0.69 for N 5
5. These c values were used to produce the first class of
optimized wavenumber-extended schemes documented in S­f

­xD5
1

Dx
(0.213933fi22 2 1.141798fi21

Appendix 3.
A similar integrated error can be defined for the imagi-

1 0.641798fi 1 0.286067fi11) (70)
nary part of the modified wavenumber

fi21/2 5 20.213933fi22 1 0.927865fi21 1 0.286067fi

Ei 5 Ecf

0
(ki*)2 dk. (67) fi11/2 5 20.213933fi21 1 0.927865fi 1 0.286067fi11 .

(71)Again, substituting the imaginary part of the modified
wavenumber, ki*, into this definition, we obtain

• The fourth-order wavenumber-extended upwind-
biased scheme:Ei 5 Ecf

0
HON

n51
[(an 1 a2

n) cos(nkl)] 1 a0J2

dk. (68)

After some simple algebraic manipulation, the minimum S­f

­xD5
1

Dx
(20.055453fi23 1 0.360600fi22 2 1.221201fi21

condition of ­Ei/­aJ 5 0 (2N # J # N) gives

1 0.554534fi 1 0.389400fi11 2 0.027880fi12)

Ecf

0
Ha0 1 ON

n51
[(an 2 a2n) cos(nk)]J cos(Jk) dk 5 0. (69) (72)

fi21/2 5 0.055453fi23 2 0.305147fi22 1 0.916054fi21

Equation (69) provides another system of linear algebraic
1 0.361520fi 2 0.027880fi11equations which can be used for additional constraints

in deriving the wavenumber-extended schemes. As dis- fi11/2 5 0.055453fi22 2 0.305147fi21 1 0.916054fi

cussed in Section 4.2, the schemes obtained by the
1 0.361520fi11 2 0.027880fi12 . (73)

additional constraints (42) are not stable. The imaginary
part of the modified wavenumber becomes negative for
some wavenumber ranges. In the schemes obtained by • The sixth-order wavenumber-extended upwind-biased
the integrated error minimization approach, this negative scheme:
wavenumber range is in the relatively low wavenumber
end, and in Lele’s approach, this negative wavenumber
range is in the relatively high wavenumber end. In S­f

­xD5
1

Dx
(0.015825fi24 2 0.127442fi23 1 0.482326fi22Appendix 3, the second class of the optimized wavenum-

ber-extended schemes obtained by Lele’s approach is doc-
2 1.303877fi21 1 0.553877fi 1 0.417674fi11umented.

2 0.039225fi12 1 0.000842fi13) (74)
APPENDIX 3

fi21/2 5 20.015825fi24 1 0.111617fi23 2 0.370709fi22

A Summary of Wavenumber-Extended Upwind-Biased
1 0.933168fi21 1 0.379291fiFinite-Difference Schemes
2 0.038383fi11 1 0.000842fi12The first class of wavenumber-extended upwind-biased

finite-difference schemes are those with constraints (41). fi11/2 5 20.015825fi23 1 0.111617fi22 2 0.370709fi21

In this class of schemes, the wavenumber range with a
1 0.933168fi 1 0.379291fi11 .

better dispersion accuracy is extended. As in some finite-
volume formulations, the cell face value of the variable is 2 0.038383fi12 2 0.000842fi13 . (75)
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• The eighth-order wavenumber-extended upwind-
fi21/2 5 0.066313fi23 2 0.231655fi22 1 0.630421fi21biased scheme:

1 0.668872fi 2 0.1339550fi11

fi11/2 5 0.066313fi22 2 0.231655fi21 1 0.630421fiS­f

­xD5
1

Dx
(20.004191fi25 1 0.041288fi24 2 0.188962fi23

1 0.668872fi11 2 0.133950fi12 . (81)
1 0.552022fi22 2 1.328033fi21 1 0.528033fi

• The seventh-order wavenumber-extended upwind-1 0.447978fi11 2 0.049133fi12 1 0.000379fi13
biased scheme 1:

1 0.000619fi14) (76)
kl1 5 2.2, kl2 5 3.1, c2 5 0.25, and N 5 5

fi21/2 5 0.004191fi25 2 0.037097fi24 1 0.151864fi23

2 0.400158fi22 1 0.927875fi21 1 0.399842fi S­f

­xD5
1

Dx
(20.006146fi25 1 0.047576fi24 2 0.168880fi23

2 0.048136fi11 1 0.000998fi12 1 0.000619fi13

1 0.399623fi22 2 0.941121fi21 2 0.017192fifi11/2 5 0.004191fi24 2 0.037097fi23 1 0.151864fi22

1 0.917003fi11 2 0.295376fi12 1 0.073247fi132 0.400158fi21 1 0.927875fi 1 0.399842fi11

2 0.008734fi14) (82)2 0.048136fi12 1 0.000998fi13 1 0.000619fi14 .

fi21/2 5 0.006146fi25 2 0.041430fi24 1 0.127450fi23(77)

2 0.272173fi22 1 0.668949fi21 1 0.686140fiThe second class of the wavenumber-extended upwind-
biased finite-difference schemes are those with constraints 2 0.230863fi11 1 0.064514fi12 2 0.008734fi13
(42). In this class of schemes, the wavenumber range with

fi11/2 5 0.006146fi24 2 0.041430fi23 1 0.127450fi22a better dispersion accuracy is extended and the numerical
dissipation at a certain wavenumber is also specified. These 2 0.272173fi21 1 0.668949fi 1 0.686140fi11schemes are not stable.

20.230863fi12 1 0.064514fi13 2 0.008734fi14 .
• The third-order wavenumber-extended upwind-biased

(83)scheme 1:

kl1 5 1.7, kl2 5 3.1, c2 5 0.0, and N 5 3
ACKNOWLEDGMENTS

The author is grateful to the anonymous reviewers for their useful com-S­f

­xD5
1

Dx
(20.066313fi22 1 0.282329fi22 2 0.799522fi21

ments.

2 0.132282fi 1 0.865376fi11 2 0.149589fi12)
REFERENCES(78)

1. R. F. Warming and R. M. Beam, Upwind second-order differencefi21/2 5 0.066313fi23 2 0.216016fi22 1 0.583505fi21
schemes and applications in aerodynamics flows, AIAA J. 14, 1241

1 0.715787fi 2 0.149589fi11 (1976).

2. W. Shyy, A study of finite difference approximations to steady-state,
fi11/2 5 0.066313fi22 2 0.216016fi21 1 0.583505fi convection-dominated flow problems, J. Comput. Phys. 57, 415

(1985).1 0.715787fi11 2 0.149589fi12 . (79)
3. B. P. Leonard, A stable and accurate convective modelling procedure

based on quadratic upstream interpolation, Comput. Methods Appl.• The third-order wavenumber-extended upwind-biased
Mech. Eng. 19, 59 (1979).

scheme 2:
4. A. Harten, High resolution schemes for hyperbolic conservation laws,

J. Comput. Phys. 49, 357 (1983).kl1 5 1.7, kl2 5 3.1, c2 5 0.25, and N 5 3
5. B. P. Leonard, Simple high-accuracy resolution program for convec-

tive modeling of discontinuities, Int. J. Numer. Methods Fluids 8,
1291 (1988).S­f

­xD5
1

Dx
(20.066313fi22 1 0.297968fi22 2 0.862076fi21

6. M. N. Rai and P. Moin, Direct simulations of turbulent flow using
finite-difference schemes, J. Comput. Phys. 96, 15 (1991).2 0.038451fi 1 0.802822fi11 2 0.133950fi12)

7. S. K. Lele, Compact finite difference schemes with spectral-like reso-
lution, J. Comput. Phys. 103, 16 (1992).(80)



WAVENUMBER-EXTENDED UPWIND-BIASED SCHEMES 255

8. M. N. Rai, Navier–Stokes simulations of blade–vortex interaction 18. J. C. Strikwerda, Initial boundary value problems for the method of
lines, J. Comput. Phys. 34, 94 (1980).using high-order accurate upwind schemes, AIAA Paper 87-0543

(1987) (unpublished). 19. S. T. Zalesak, Fully multidimensional flux-corrected transport algo-
rithms for fluids, J. Comput. Phys. 31, 335 (1979).9. P. Tamamidis and D. N. Assanis, Three-dimensional incompressible

flow calculations with alternative discretization schemes, Numer. 20. Y. Li and M. Rudman, Assessment of higher-order upwind schemes
Heat Transfer B 24, 57 (1993). incorporating FCT for convection-dominated problems, Numer. Heat

Transfer B 27, 1 (1995).10. T. Kawamura and K. Kuwahara, Computation of high Reynolds
number flow around a circular cylinder with surface roughness, AIAA 21. C. K. W. Tam and J. C. Webb, Dispersion-relation-preserving finite
Paper 84-0340 (1984). difference schemes for computational acoustics, J. Comput. Phys.

107, 262 (1993).11. R. Vichnevetsky and F. De Schutter, in Advances in Computer Meth-
ods for Partial Differential Equations, edited by R. Vichnevetsky 22. C. A. J. Fletcher, Computational Techniques for Fluid Dynamics
(AICA/IMACS, Rutgers University, NJ, 1975), p. 46. (Springer-Verlag, Berlin, 1991), Vol. 1.

12. D. W. Zingg and H. Lomax, Finite-difference schemes on regular 23. R. Vichnevetsky and J. B. Bowles, Fourier Analysis of Numerical
triangular grids, J. Comput. Phys. 108, 306 (1993). Approximations of Hyperbolic Equations (SIAM, Philadelphia,

1982).13. T. Hayase, A. C. Humphfrey, and R. Grief, A consistently formulated
QUICK scheme for fast and stable convergence using finite-volume 24. L. N. Trefethen, Stability of hyperbolic finite-difference models with
iterative calculation procedures, J. Comput. Phys. 98, 108 (1992). one or two boundaries, in Large-Scale Computations in Fluid Mechan-

ics, edited by B. E. Engquist, S. Osher and R. C. Somerville, Lectures14. P. K. Khosla and S. G. Rubin, A diagonally dominant second-order
accurate implicit scheme, Comput. Fluids 2, 207 (1974). in Applied Mathematics, Vol. 22 (Am. Math Soc., Providence, RI,

1985), p. 311 (1985).15. Y. Li and L. Baldacchino, Implementation of some higher-order
convection schemes on non-uniform grids, Int. J. Numer. Methods 25. G. de Vahl Davis and G. D. Mallinson, An evaluation of upwind

and central difference approximations by a study of recirculatingFluids 21, 1201 (1995).
flow, Computers and Fluids 4, 29 (1976).16. B. Gustafsson, The convergence rate for difference approximations to

mixed initial boundary value problems, Math. Comput. 29, 396 (1975). 26. A. O. Demuren, False diffusion in three-dimensional flow calcula-
tions, Computer and Fluids 13, 411 (1985).17. M. H. Carpenter, D. Gottlieb, and S. Abarbanel, The stability of

numerical boundary treatments for compact high-order finite-differ- 27. G. D. Raithby, Skew upstream differencing schemes for problems
involving fluid flow, Comp. Meths. Appl. Mech. Eng. 9, 153 (1976).ence schemes, J. Comput. Phys. 108, 272 (1993).


